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SECTION ONE
V .\"» .

The General Problem

§ 1. Importance of Spherical Triangles. On a sphere S in
numerable curves of many kinds can be drawn connecting any
two given points, A and B, of S. The shortest of all these curves
is a great circle arc from A to jB.* We may go from A to B in
either direction along the circle, but unless A and B are 180°
apart, one arc AB will be shorter than the other; and this more
direct arc will be the shortest possible route from A to B on
the surface.

Since the earth is approximately spherical, great circles on a
sphere are important for navigation, both marine and aerial.
Methods of determining the course to be followed in going from
one point to another on the earth depend largely on the proper
ties of "spherical triangles," whose sides are arcs of great circles.
We need consider only angles and arcs less than 180°.
By the angle A between two sides, AB and AC, of a spherical
triangle is meant the angle between the straight lines tangent
to the arcs AB and AC at A. Those lines lie in the planes OAB
and OAC and are perpendicular to the radius OA.
As in plane trigonometry, we shall here denote the angles of
a spherical triangle by capital letters, A, B, C, and the opposite
sides (arcs) by the corresponding small letters a, b, c. We shall
find that if any three of these six "parts" of a triangle are given,
even the three angles, the other three parts can be calculated,
with sometimes more than one possible solution. The formulas
needed will be analogous to but somewhat different from those
used in plane trigonometry.
* A great circle of a sphere is one whose plane passes through the center O
of the sphere. Unless A and B are ends of a diameter, they together with O
determine a plane and there is one great circle through A and B. What if A
and B are ends of a diameter?
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§ 2. Some Essential Theorems from Solid Geometry. Let
us list at the outset some geometric theorems that will be useful
in understanding or proving trigonometric relations. We shall
later refer to some of these explicitly by number, thus, Th. 4
for theorem 4 in this list.

In any spherical triangle:

1. The sum of the three sides < 360°. (Each side may ex
ceed 90°.)

2. The sum of the three angles > 180°, but < 540°. (Each
angle may exceed 90°.)

Definition. The difference between A + B + C and 180° is called
the "spherical excess."

3. The area of the triangle is to the area of the sphere as the
excess is to 720°.

4. Any side contains the same number of angular units
(degrees, etc.) as the angle which it subtends at the cen
ter of the sphere.

Definition. A point P is a pole of a great-circle arc p if P is an end
of the diameter perpendicular to the plane of p. It follows that P is
at a quadrant distance, 90°, from every point of p.

5. If the vertices (A, B, C) of one spherical triangle are
poles of the sides (a', b', c') of another triangle, then the

vertices (A', B', C") of the second triangle are poles of
the sides (a, b, c) of the first. If A and A ' are on the same
side of arc B'C', and similarly for the other vertices,
either triangle is called the polar of the other (Fig. 1).

6. In any spherical triangle and its polar, any side of one
triangle is the supplement of the opposite angle of the
other:

0=180° -A', a' =180° -A; etc. (1)

7. If from the foot of a perpendicular p to a plane, a straight
line m is drawn at right angles to any line I in the plane,
and a line n is drawn joining the intersection of m and I
to any point of the perpendicular p, then n is perpen
dicular to I.
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A' C

\
b'

FIG. 2.

§ 3. The Sine Law. In any plane triangle the three sides
are proportional to the sines of the opposite angles:

b c
Plane A:

a _ _
sin A sin B sin C

In a spherical triangle the corresponding sine law is

sin a sin & sin c

sin A sin B sin C (2)

That is
,

the sines o
f the three sides are proportional to the sines o
f

the opposite angles.

Proof: From any vertex C drop a perpendicular CF to the plane
OAB of the opposite side c. From F draw a perpendicular FH to OA,
and draw HC. Let p, m, n denote the lengths of these lines, as in Fig
ure 2. In the right triangle FCH, HF and HC are perpendicular to
OA (HF by construction and HC by Th. 7). Hence these lines are
parallel to the tangents at A, whose included angle measures A. Thus,
angle FHC = A. Also, the central angle AOC = arc b (in degrees),
and angle BOC = a. In the two right triangles HOC and FHC we have :

n — r sin 6, p = n sin A, ... p = r sin 6 sin A.

Similarly, by dropping a perpendicular FK from F to OB and drawing
KG, we could solve again for p on the other side, getting

p = r sin a sin B.

Equating values for p and dividing both sides by r sin A sin B:

sin a sin b

r sin a sin B = r sin 6 sin A,
sin A sin

Since a and 6 are any two sides, we have more generally (2) above.

Remark. In the foregoing proof, based on Figure 2, the sides
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and angles are treated as each less than 90°. But the law (2)
can be shown to be general, as can the following law also.

§ 4. The Cosine Law, for Sides. In any plane triangle the
square of any side equals the sum of the squares of the other
two sides minus twice the product of those sides by the cosine
of their included angle. For instance, a2 = fr

2 + c2 — 2 be cos A.
The corresponding law in a spherical triangle is

cos a = cos b cos c + sin b sin c cos A. (3)

That is
,

the cosine o
f any side equals the product o
f the cosines o
f

the other two sides, plus the product o
f the sines o
f those sides by

the cosine o
f their included angle.

Proof: The angle at C (Fig. 3) between the tangent lines CL (= u)

and CM (= v) measures angle C of
the spherical triangle ABC. In the
right triangles COL and COM the
acute angles at 0 are equal to sides

b and a (in degrees) ; and we have
at once:

M = r tan b, v = r tan a,

OL = r sec b, OM = r sec a.

Now express LM by the cosine law
FIG. 3. in each of the plane triangles LMC

and LMO:

(I) V? = w2 + w
2 — 2 MZ) cos C = r2 (tan2 6 + tan2 a — 2 tan a tan 6 cos C),

(II) w2 = OL2 + OM2 - 2 OL OM cos c =

r2 (sec2 b + sec2 a — 2 sec a sec b cos c).

Equating, replacing sec2 b by 1 + tan2 b, etc., we get on cancelling:

— tan a tan b cos C = 1 — sec a sec b cos c.

Transposing the two negative terms and multiplying through by cos a

cos b, we have equation (3) above.

Since this law holds for any side it gives us three formulas,

cos a = cos b cos c + sin b sin c cos A, (4)

cos b = cos c cos a + sin c sin a cos B, (5)

cos c = cos a cos b + sin a sin b cos C. (6)
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Observe that, as in the case of the cosine law for plane triangles,
this law (4), (5), (6) can be used to solve a spherical triangle if
we have given the three sides a, b, c, or any two sides and their
included angle. (After finding the third side from one of the

formulas, the other angles can be found from the other two for

mulas.) The question of less laborious methods of solving will
be discussed presently (§ 6).

§ 5. The Cosine Law, for Angles. In any spherical triangle
there is also a cosine law for angles, in which the formulas read
thus:

cos A = — cos B cos C + sin B sin C cos a, (7)

cos B = — cos C cos A + sin C sin A cos b, (8)

cos C = — cos A cos B + sin A sin B cos c. (9)

Probably the best plan for remembering the law is to state it
in words as was done in § 4 for the cosine law for sides.*

This new cosine law is readily proved by considering the polar
triangle A'B'C of the given triangle ABC (Fig. 1, p. 3).
The cosine law for sides, applied to the polar triangle (whose sides
are a', b', c') gives

cos a' = cos 6' cos c' + sin a' sin b' cos C". (10)

But by Th. 6, § 2, o' = 180° - A, ete.; also C" = 180° - c. Since the
sine of (180° — A) = sin A, while cos (180° — A) = — cos A, etc., we
have at once

— cos A — (— cos B) (— cos C) + sin A sin B (— cos c).

Simplifying and multiplying through by — 1 gives (7). Similarly for
(8) and (9).

This cosine law for angles can be used to solve any spherical
triangle if we have given the three angles A, B, C or any two
angles and their included side. More convenient methods are
available, however.

* Observe also that the first equation gives the second if we advance the let
ters cyclically, i.e., change every a (or A) to 6 (or B, respectively), every b to
a c, and every c to an a. Repeating this operation, the second equation gives
the third, and the third gives the first again.
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§ 6. Concerning the Solution of Spherical Triangles. We
have seen that a spherical triangle can be solved in certain cases
by the foregoing laws:

Given Parts Use

3 sides; or 2 sides and included angle: Cosine Law for Sides

3 angles; or 2 angles and included side: Cosine Law for Angles

Suppose, however, that we have given some other combina
tion of three parts, such as two angles and the side opposite one
of them, say

A = 70°, B = 80°, a = 55°.

Using these values in the sine law we have:

sin 55° _ sin b _ sin c
sin 70°
"
sin 80°

~
sin C

From this we could find side b (possibly two solutions). But
since the angle-sum in a spherical triangle is not 180° as in a

plane triangle, we do not know angle C and cannot complete the

solution by the sine law alone. Substituting the given parts
in (7), we have

cos 70° = - cos 80° cos C + sin 80° sin C cos 55°. (11)
Looking up the given functions and combining, we have

.56486 sin C - .17365 cos C = .34202. (12)

This equation is similar to one discussed in § 306 of the author's
Introduction to Mathematical Analysis and can be solved by the method
described there, viz. by determining two constants m and such that
m sin (C — 4

>
)

shall equal the left member of equation (12). Then,
solving m sin (C — $

) = .34202 for C — , we can find C. But this
method of solving for C requires considerable planning and is rather
inconvenient.

The problem of solving a spherical triangle when given two

sides and the angle opposite one of them can be handled by a

similar method, likewise inconvenient.
To summarize: We have found three basic laws for spherical
triangles, the sine law, the cosine law for sides, and the cosine
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law for angles. By means of these three laws it is possible to
solve any spherical triangle, if any three of its six parts are given.
We could stop at this point and rely upon the rather compli
cated methods of solution now available with these laws. By
studying further, however, we can derive from these three basic
laws other formulas better adapted to the rapid solution of

triangles through logarithmic methods. In Section II we shall
do this for right spherical triangles and in Section III we shall
deal with oblique spherical triangles.

EXERCISES

Solve the following spherical triangles for the parts specified.

1. Given a = 77°, b = 49°, C = 32°. Find c.
2. Find A, B, given a = 48°, b = 88°, c = 70°.
3. Find c, given A = 70°, B = 75°, C = 65°.
4. Given B = 68°, C = 95°, a = 40°. Find A.

SECTION TWO

Right Spherical Triangles

§ 7. Special Formulas Derived. If a spherical triangle has
at least one right angle, it is called a right spherical triangle.
(It is possible to have a bi-rectangular triangle with two right
angles, or even a tri-rectangular triangle with all three angles
right angles.)
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In a right spherical triangle let C = 90°. Then sin C = 1
and the sine law (§ 3) gives

sin a sin 6-—r = -—„ = sin c,
sin A sin B

sin a = sin c sin .4, (13)

sin b = sin c sin B. (14)

Further, cos C — cos 90° = 0, and equation (6) of the cosine law
for sides gives

cos c = cos a cos b. (15)

Similarly equation (9) of the cosine law for angles gives

0 = — cos A cos B + sin A sin B cos c.

Transposing and dividing by — sin A sin B

cos c = ctn A ctn S. (16)

The other two forms, (7) and (8), of the cosine law for angles
give immediately

cos A = cos a sin B, (17)

cos B = cos b sin A. (18)

Four other important formulas, obtainable from the foregoing as
indicated below, are:

cos A = tan b ctn c, (19)

cos B = tan a ctn c, (20)

and
sin a = tan & ctn B, (21)

sin & = tan a ctn .4. (22)

Derivation of (19). Replacing cos a in (4) by cos c/cos b from (15)
and solving for cos A, we find

. , . cos c , cos c (1 — cos2 6)
sin o sin c cos A = — cos o cos c = ; >

cos b cos o

cos c sin b , , ,
cos A = r = tan b ctn c.

sin c cos o
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The derivation of (20) is similar.

Derivation of (22). From the sine law, sin 6 = sin a sin 5/sin A.
In this expression replace sin B by cos A/cos a from (17), and we have:

. , sin a cos A
sin 6 = :—- = tan a ctn A.

cos a sin A

The derivation of (21) is similar.

§ 8. Solving Right Triangles by the Special Formulas. The
foregoing ten formulas (13)-(22), printed in black-face type,
each of which is suited to logarithmic work, can be used to solve
quickly any right spherical triangle. Let us call c (opposite the
right angle C) the hypotenuse, and a and b the legs, even though
a or b may exceed c. The possible cases as to given parts (omit
ting C = 90°), and the best formulas to use in solving for the
remaining parts and in checking, are shown in the following
table.

N.B. It is suggested that students pause at this point to find out
for themselves which of the formulas (13)-(22) could conveniently be used
to calculate the remaining parts of each following triangle, and then see
whether their selection of formulas agrees with the table below:

I. Given a = 78°, c = 82°.
II. Given c = 100°, A = 81°.
III. Given A = 75°, B = 115°.

Case Given Parts Formulas for Solving Checking
I Two legs (a; 6) (15), (21), (22) (16)

II Hypotenuse; leg (say c; o) (13), (15), (20) (18)

III Leg; opposite angle (say a; A) (13), (17), (22) (14)

IV Leg; adjacent angle (say a; B) (17), (20), (21) (19)

V Hypotenuse; angle (say c; A) (13), (16), (19) (21)

VI Two angles (A; B) (16), (17), (18) (15)

There would be modifications of this list in Cases II-V for other
selections of suitable letters under each type. The list is given here
simply to bring out the possibility of solving in each general case by
means of some of the ten formulas.

It is not advisable to use this list mechanically, as a much
more convenient plan is available which makes it possible to
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pick out and write down the appropriate formula in any case

without even memorizing the ten special formulas, (13)-(22).
This very desirable objective is attained by using two easily
remembered rules which cover all ten special formulas, as was

discovered by Napier, the inventor of logarithms.

EXERCISES

1. Given c and 6, to find a, A, B, which of the formulas (13) —(23)
would be needed?

2. (a) Like Ex. 1 if given 6 and B, to find c, a, and A.

(b) Similarly, if given b and A, to find c, a, and B.

3. Given 6 = 74° 15', A = 82° 30', find the other parts.

§ 9. Napier's Rules. Omit the right angle C, and replace
the hypotenuse (c) and the other angles (A and B) by their
complements, abbreviated: co.c, co.A, co.B. Then write
these modified parts and the other two parts (a and b) in a cir
cular arrangement in the relative order in which the parts occur
around the triangle:

co. A

co.c

co.B

FIG. 4.

Any one of these five "parts" in the circular arrangement may
now be considered as the "middle part," the two next to it being
then called the "adjacent parts," and the remaining two the
"opposite parts." With this understanding, Napier's two rules
which cover all ten of the special formulas (§ 8) are :

I The sine of the middle part = the product of the tangents
of the two adjacent parts;

II The sine of the middle part = the product of the cosines
of the two opposite parts.
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To illustrate: Take a as the middle part. Then the adjacent
parts are 6 and co.B. (See Fig. 4.) Rule I gives

sin a = tan b tan (co.B} = tan b ctn B,

since the tangent of the complement of B is the cotangent of B.
This equation repeats the special formula (21).

Also, with a as the middle part, the opposite parts are co.c and co.A,
whose cosines are the sines of c and A. Thus Rule II gives

sin a = cos (co.c) cos (co.A) = sin c sin A,

which repeats special formula (13).

EXERCISE

1. Taking 6 as the middle part, verify as in the foregoing illustration
that Rules I and II furnish two more of the special formulas. Likewise
take co.A, co.c, and co.B, in turn, as the middle part, and thus verify
that Rules I and II cover the entire list of special formulas.

§ 10. Use of Napier's Rules in Solving Triangles. Given
two parts of a right spherical triangle, to find some specified
third part, we first choose carefully some one of these three

parts (or the complement where needed) as the "middle part"
in such a way that the other two parts shall both be "adjacent
parts" or both "opposite parts." The corresponding rule gives
the equation needed in solving for the required part.

In studying the following illustrations, re-draw Figure 4 and notice
carefully where the various parts come in the circular arrangement.

EXAMPLE I. Given a = 60°, A = 70°. Apply Napier's rules
to get the formulas needed for finding: (1) c; (2) b; (3) B.

(1) Looking at a, co.A, and co.c in Fig. 4, we choose a as
the middle part, which makes co.A and co.c opposite parts.
Rule II then gives: sin a = cos (co.A) cos (co.c). But co.A =
co.70° = 20°; also, the cosine of the complement of c is equal to
sin c. Hence the equation simplifies to

sin 60° = cos 20° sin c.

(2) Looking at a, co.A, and b in Figure 4, we choose b as the
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middle part, making a and co.A adjacent parts. By Rule I:
sin b = tan a tan (co.A) which reduces to

sin b = tan 60° tan 20°.

(3) With o, co.A, and co.fi, we take co.A as the middle part,
with a and co.fi as opposite parts. Then, by Rule II: sin (co.A)
= cos a cos (co.fi), which gives

sin 20° = cos 60° sin B.

The equations thus obtained in (1), (2), (3), will be solved
shortly (§11).
For any other pair of given parts and any required third part,
we would proceed in similar fashion. It is important always to
consider the circular order of "parts" in Figure 4, in order to
choose the "middle part" effectively.

If angle A were obtuse, say A = 140° with a = 170°, then in (1)
above sin a would be sin 170°, and co.A would be — 50°. But
cos (— 50°) = cos 50°. In (2) above, however, where we have
tan (co.A), this would be tan (— 50°), which equals — tan 50°, a neg
ative value. Here tan a would be tan 170° (= — tan 10°), and the two
negatives would combine to give a positive value for sin b. Similarly
in (3) above, we should have sin (co.A) = sin (— 50°) = — sin 50°, and
cos a = cos 160° = — cos 20°, giving a positive value for sin B. Some
times, however, the — signs do not disappear. (Example II, § 11, will
cover such a case.)

EXERCISES

In each following case choose a suitable middle part, write the corre
sponding formula by one of Napier's Rules, insert the given numerical
values, and write in simplified form an expression for a function of the re
quired part.

1. Given a = 70°, b = 40°, to find c.

2. To find B when given a = 100° and c = 85°.

3. Given 6 = 120°, B = 105°, to find c.

4. To find A if given B = 75° and c = 110°.

5. Given A = 72°, B = 108°, to find:

(i
) a; (ii) b
;

(iii) c.
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§ 11. Practical Solution of Right Spherical Triangles. After

getting a numerical formula involving each unknown part alone,
as in § 10, (1), (2), (3), we carry out the calculations, preferably

by logarithms. We must carefully keep track of any negative

signs that may enter with a cosine, tangent, or cotangent of an
obtuse angle or side greater than 90°.
When a part (angle or side) is found from its cosine, tangent,
or cotangent, the sign of the function shows in what quadrant
the part should be taken. When, however, a part is found from
its sine, there is an ambiguity: either the first or second quadrant
may be used unless excluded by some further consideration.
Thus there may be more than one triangle which contains the
given parts.

In deciding how to pair values found for different parts in such am
biguous cases, and also in excluding a second (supposed) solution in
some cases, the following facts, stated here without proof, are some
times helpful.

1. A leg and its opposite angle are in the same quadrant.
2. The two legs, a and 6, are in the same quadrant if c < 90°; but
are in different quadrants if c> 90°.

3. The sum of any two sides exceeds the third side.

4. The sum of the oblique angles, A and B, exceeds 90° and is less
than 270°; but the absolute difference of these angles is less than
90°.

5. Two unequal angles are opposite unequal sides; the greater angle
is opposite the greater side.

EXAMPLE I. Solve completely the right spherical triangle in
which a = 60°, A = 70°.
By Napier's Rules we found in § 10:

sin c = > sin b = tan 60° tan 20°, sin B = •

cos 20°
'

cos 60°

Performing these operations by logarithms we get finally:

log sin c = 9.96454 - 10, log sin b = 9.79963 - 10,
log sin B = 9.83508 - 10.

The tables then give the following values of c, b, B, less than 90° :

ci = 67° 9'.6, fc
i = 39° 4'.9, BI = 43° 9'.6.
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Another possibility is the supplement of each, denoted by a

subscript 2:

cz
= 112° 50'.4, h = 140° 55'.1, B2 = 136° 50'A.

The question arises finally whether, in a valid triangle for the given
a and A, the set ch b

\, and B\ should go together, likewise c2, 62, B2, or
whether some mixture of the two sets would be needed. By Fact 1

above: 6
1 and B\ are present or else 6
2 and B2; but not b\ and B2, etc.

By Fact 2 or 3: Ci requires 6
1 since a = 60°; and c2 requires b2. Thus,

in this problem, the possible triangles are:

(1) a = 60°, A = 70°, c = 67° 9'.6, b = 39° 4'.9, B = 43° 9'.6.

(2) a = 60°, A = 70°, c = 112° 50'.4, b = 140° 55'.1, B = 136° 50'.4.

Example II. Given a = 160°, B = 80°, find A, b, c.

1
. To find A from a, B: Rule II, with co.A as middle part:

cos A = cos a sin B, :. cos A = — cos 20° sin 80°.

2
. To find b from a, B: Rule I with a as middle part:

sin a = tan b ctn fi
,

tan b = sin a tan B = sin 160° tan 80°.

3
. To find c from a, B: Rule I with co.B as middle part:

cos B = tan a ctn c, ctn c = cos B ctn a = — cos 80° ctn 20°.

In part (1) above, cos a is cos 160° which equals — cos 20°.
Thus cos A must be negative and A must be obtuse (A > 90°).
Similarly for ctn c and c in part (3).
The logarithmic work may be arranged compactly as follows.
We omit writing — 10 where the characteristic has the form

9 — 10, and simply keep it in mind. Where working with

a negative function such as cos 160° (= — cos 20°), we write a

small letter n after the logarithm to avoid overlooking the —

sign for the final function. Two n's in the same product would
neutralize each other.

(1) (2) (3)

cos a 9.97299 n sin a 9.53405 cos B 9.23967
sin B 9.99335 tan B 0.75368 ctn a 0.43893 n

cos A 9.96634 n tan b 0.28773 ctn c 9.67860 n

A = 180° - 22° 16' b = 62° 43'.6 c = 180° - 64° 29'.7
A- 1.57° 44' c= 115° 3()'.3

X
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To check A, b, c: try Rule I tan 6

with co. A as middle part: ctn c

cos A = tan 6 ctn c. cos A

0.28773

9.67860 n

9.96633 n

These logarithms check closely enough. A further check on the parts
themselves can be made by using one given part with two calculated
parts.

EXERCISES

In Exercises 1-10 find the remaining parts of the right triangle (or
triangles) having each following pair of given parts (besides C = 90°).
Check in each case.

1. A = 75° 12', B = 52° 27'. 6. b - 117° 12', c = 78° 45'.
2. A =168° 24', 5 = 101° 6'. 7. 6=71°2'.l, A = 95°14'.8.
3. a =98° 12', &=109°40'. 8. 6 = 21° 8', 5 = 33° 40'.
4. a = 81° 36'.5, b = 130°. 9. c = 69° 48'.4, A = 83° 55'.
5. a = 62° 53'.4, c = 85° 14'.3. 10. c = 145° 8', B = 100° 12'.

11.-14. In Exercises 1-4, p. 12, carry cut the computations needed
and find each specified part.

15. Similarly find a, b, c in Exercise 5, p. 12, and check.

16. From a point A on the equator near the Galapagos Islands, in
longitude 90° W., a ship heads for a point B near Hawaii in latitude
20° N. and longitude 155° W. If the ship follows the great circle arc
AB, find the distance it must go and the angle A northward from the
equator at which it must start. A 1' arc = 1 nautical mile. (Hint:
Denote by C the point where the meridian 155° W. meets the equator,
65° west of A. Then we have a right spherical triangle with C = 90°,
b = arc AC = 65°, and a = arc CB = latitude of B = 20°. We are to
find c and A.)

17. Like Ex. 16 for a flight from a point A on the equator near Singa
pore in longitude 103° E. to B near Tokio in latitude 36° N. and
longitude 140° E.

18. Similar to Ex. 16 for a voyage from a point A on the equator in
longitude 0° to a point B off Buenos Aires in latitude 35° S. and longi
tude 55° W.

19. Similar to Ex. 16 for a flight from A on the equator near the
Amazon River in longitude 50° W. to B near Capetown in latitude 34°
S. and longitude 20° E.



SECTION THREE

Oblique Spherical Triangles

§ 12. Formulas Needed. As was pointed out in § 6, any
spherical triangle can be solved, rather inconveniently, by means
of the three basic laws: the sine law; the cosine law for sides, and
the cosine law for angles. It is preferable to replace the cosine
laws by other formulas adapted to logarithmic methods. The
new formulas, deducible from the cosine laws by methods to be

explained in §§ 18-19, resemble the formulas used in the loga
rithmic solution of a plane triangle when three sides or two sides
and their included angle are given.* There are four sets of
formulas needed here, of two main types.

(I) The half-angle formulas, in terms of the sides. Let s de
note the semi-perimeter, s = \ (a + b + c), and define a quantity
r such that

i"
sin (s — a) sin (s — b) sin (s — c) , ,— •

(23)
sin s

Then it is found that

tan ii4=-r- -» tani# = --- — » (24)sin (s - a) sin (s - b)
with a similar equation for tan \ C.
(II) The half-side formulas, in terms of the angles. Let S
denote § (A + B + C), and define R so that

/ cos OS
- A) cos (S - B) cos (S - C)K= (25)— cos S

* See the author's Introduction to Mathematical Analysis, §§ 158-159, or any
text on plane trigonometry.



OBLIQUE SPHEBICAL TRIANGLES 17

(The fraction under this radical is positive, for S > 90° and each
difference, S — A, etc. is less than 90°.) The half-sides are
given by

ctn | a = ctn^ b =
cos (S - B)cos (S

- A)
with a similar equation for ctn § c.

(III)-(IV). The remaining two sets are given in § 14,

(26)

§ 13. Solution of Oblique Triangles : Cases I, II. Case I.
Given the three sides: a, b, c.

To find the angles A, B, C by logarithmic methods use the
half-angle formulas (24) with (23).

Example I. Given a = 50°, b = 80°, c = 110°.

Here s = | (50° + 80° + 110°) = 120°, s-a= 70°, s - b = 40°,
s-c= 10°.

r =
sin 70° sin 40° sin 10°

sin 120°
tan | A

sin 70°
> etc. (27)

The logarithmic work runs as follows. The sine law is used to
check the angles obtained.

sin 70°
sin 40°
sin 10°

9.97299

9.80807
9.23967

sin 120°
9.02073

9.93753

r2

r
9.08320

9.54160

r
sin 70°

tan h A

9.54160
9.97299

r
sin 40°

9.56861 tan \ B

9.54160
9.80807

9.73353

§ A = 20° 19'.3
A = 40° 38'.6

i B = 28° 25'.9
B = 56° 51'.8

r
sin 10°
tan \ C

9.54160

9.23967

0.30193

§ C = 63° 29',
C = 126° 58'

Check:

numerator
denominator

sin a sin b sin c

sin A sin B sin C

fraction

9.88425
9.81381

9.99335
9.92291

9.97299
9.90254

0.07044 0.07044 0.07045

Case II. Given the three angles: A, B, C.
To find the sides a, b, c use the half-side formulas (26) with



18 OBLIQUE SPHERICAL TRIANGLES

(25). The arrangement of the logarithmic work is substan
tially identical with that in Case I above.
If the angles are A = 50°, B = 80°, C = 110°, we have S = 120°,
S - A = 70°, S- B = 40°, S-C- 10°. Since cos S is negative,
the denominator, — cos S, in (25) is positive and the solution is real.

EXERCISES

1. Find and check the angles of a spherical triangle whose sides are:
a = 107° 32'.2, b = 87° 40'.8, c = 96° 37'.

2. Like Ex. 1 for the triangle: a = 73° 15', b = 118° 7', c = 158° 0'.
3. Find and check the sides of a spherical triangle whose angles are:
A = 112° 42'.5, B = 79° 23'.5, C = 92° 14'.
4. Like Ex. 3 for the triangle : A - 52° 11', B - 106° 0', C = 122° 39'.

§ 14. Napier's Analogies. Two other sets of new formulas
needed in solving spherical triangles are the following, called
Napier's Analogies, numbered below as Nl, N2, etc.* They
greatly resemble the law of tangents in plane trigonometry:

cos i (a — b)Nl: tani(A + B)= ctn \ C, (28)
cos |(a + b)
sin i (a - b)

N2: tanHA-B)= . \) - - ctn \ C. (29)
sin \ (a + b)

These formulas are useful when we know two sides and their in

cluded angle, a, b, C (§ 15). The other two are:

cos h (A — B)
NS: tan|(a + b)= .,- tan*c, (30)

COS 5 (A + D)

sin t (A — B)
N4: tanHa-b)= . \ Ax_ tan|c. (31)

sin f (A + a)
These are useful when we know two angles and their included
side,.

§ 15. Solution of Oblique Triangles : Casesm, IV. Case III.
Given two sides and included angle, a, b, C.

* As to the derivation of these formulas, see § 19.
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By Napier's first two analogies, N 1, N 2, we can find
\ {A + B), and \ (A — B), and hence A and B by adding and
subtracting. The third side can then be found from another

analogy, say N 4, solved thus for tan \ c:

tan \ c
sin § (A + B)

tan I (a — b). (32)
sin \{A - B)

The sine law can then be used as a check.
Example I. Given a = 112° 17', b = 84° 3', C = 95°. Here

28° 14', a+b= 196° 20'. Thus, N 1 and N 2 give:a — b

tan $ (A + B) =

tan i (A - B) =

cos 14° 7'

cos 98° 10
- ctn 47° 30',

sin 14° 7'

sin 98° 10'
ctn 47° 30'.

The computation runs as follows:

cos 14° 7'
cos 98° 10'

9.98668

9.15245 n

ctn 47° 30'
0.83423 n

9.96205

tan i(A + B) 0.79628 n

sin 14° 7'
sin 98° 10'

9.38721
9.99557

ctn 47° 30'
9.39164
9.96205

tan I (A - B) 9.35369

Hi + B) = 180° -80° 55'.1
= 99° 4'.9

i (A + B) - 99° 4'.9
\(A - B) = 12° 43'.4
A= 111°48'.3
B = 86° 21'.5

We next write (32) :

sin 99° 4'.9

sin 99° 4'.9
sin 12° 43'.4

9.99452
9.34290

tan 14° 7'
0.65162

9.40052

tan i c 0.05214

tan
sin 12° 43'.4

sin 112° 17'

tan 14° 7'.

Check

sin 84° 3'

I c = 48° 25'.9
c = 96° 51'.8

sin 96° 51'.8

sin 111° 48'.3 sin 86° 21'.5 sin 95°
-(?)

numer.
denom.

fraction

9.96629

9.96776
9.99765

9.99912
9.99687
9.99834

9.99853 9.99853 9.99853
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Case IV. Given two angles and included side, A, B, c.
The method is closely similar to that in Case III above. We
use Napier's third and fourth analogies, N 8, N 4, to find
\ (a + b), 5 (a — 6) and hence a and b. Then we find the third
angle by using N 2, solved for ctn % C:

ctn \ C = S!nfSa
+
^ tan § (A
- B). (33)

sin | (a — b)
The sine law again affords a check.

EXERCISES

1. Find and check the remaining parts of the spherical triangles
which have the following given parts:

(i
) a = 86° 31', b =70° 15', C=108°54'.

(ii) a = 73° 46', c = 91° 8', C = 66° 14'.

(iii) c = 61° 12'.2, A = 100° 22'.6, B = 81° 6'.8.

(iv) b = 95° 0', A = 122° 14', C = 89° 2'.

§ 16. Solution of Oblique Triangles : Cases V, VI. Case V.
Given two sides, angle opposite one: a, b, A.
No further formulas are needed. We find angle B from the
sine law, then use Napier's Analogies I and III to calculate C

and c, and finally check by further use of the sine law.

In finding B from its sine we have the possibility of two angles, acute
and obtuse. But we can determine whether both are admissible by
applying the following theorem which can be deduced from the cosine
law for sides (proof omitted here) :

Theorem. If b is closer to 90° than a is, there will be two solutions;
but if his farther from 90° than a is

,

there will be only one solution for B,
viz. with B in the same quadrant as b.

A corresponding theorem holds, with the letters interchanged, when
we are given a, b, B, and are solving for A.

Example I. Given a = 64° 52', b = 124° 16', A = 104° 27'.
Here 6 is farther from 90° than a is. Hence B can have only one
value, — in the second quadrant.

sin 6 sin A sin 124° 16' sin 104° 27'
sin B = ■

sin a sin 64° 52'
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Using logarithms:

log sin B = 9.94644; B = 180° - 62° 7'.6 = 117° 52'.4.
In the other formulas we need these values:

b + a = 189° 8',

B+A =222° 19 '.4,
b - a = 59° 24',
B - A = 13° 25 '.4.

With 5 > A, Analogies I and III, give for ctn \ C and tan § c:

ctn§C =

tan

cos i(b + a)
cos 1(6 - a)
COS 1(5 + A)
cos H'B - A)

tan § (B+A) =

tan 5 (& + a) =

cos 94° 34' tan 111° 9'.7

cos 29° 42'

cos 111° 9'.7 tan 94° 34'

cos 6° 42'.7

The further logarithmic work is shown below.

coslll°9'.7
tan 94° 34'

cos 94° 34'

tan 111°9'.7

8.90102 n

0.41217 n

cos 29° 42'
9.31319
9.93884

ctn^C 9.37435

cos 6° 42'.7

tan \ c

9.55751 n

1.09760n

0.65511

9.99701

0.65810

i C = 76° 40'.7
C = 153° 21'.4

Check:

sin b sin c

\ c = 77° 36'.4
c = 155° 12'.8

sin B sin C

numerator
denominator

fraction

9.91720

9.94644
9.62246
9.65170

9.97076 9.97076

Case VI. Given two angles, side opposite one: A, B, a.
This case is solved in the same way as Case V. In fact, ex
actly the same formulas are used. The sine law is

,

however,

solved for sin b instead of sin B:

sin b = sin B sin a -4- sin A.

Again there may be two admissible triangles or only one. The
question is settled by a theorem like that above, with capital
letters and small letters interchanged.
Example II. Given A = 62° 23', B = 66° 31', a = 116° 47'.
Here B is closer to 90° than A is: there are two possible triangles,
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one with b < 90°, one with b > 90°. For each of these values of

b, say 6i and fo, we carry out a logarithmic calculation like that

in Example I above.
From the sine law we obtain log sin 6 = 9.96569 — 10.

b\ = 67° 31'.4 62 = 112° 28' .6.

We use these values with a = 116° 47' to find \ (a + 6) and \ (a — b)
for each triangle:

In Triangle 1 : In Both: In Triangle 2:

| (o + b) - 92° 9'.2 | (A + B) = 64° 27' \ (a + b) = 114° 37'.8
J (a - b) = 24° 37'.8 i (A - B) - - 2° 4' J (a - 6) = 2° 9'.2

rn<5 Q2° Q' 2

ctn*ci=c52fle8taii64027';

cos 114° 37''8

cos 2° 9'.2
ctn § C, - "w„ o

*0 ft0/0-° ten 64" 27';

ta^Cl =
cS7?2^)tan9209'2=

tan § c2 = _,J\n tan 114° 37'.8.cos 64° 27'

cos (- 2° 4')
Using logarithms we find for the two triangles:

| C, - 85° 3'.5 | Cl = 85° 1'.25 | C2 = 41° 6'.1 | cu = 43° 16'.2
Ci = 170° 7

'

c, = 170° 2'.5 C2 = 82° 12'.2 c2 = 86° 32'.4.

The sine law for b, B, c, C affords a check for each triangle.

EXERCISES

In these triangles note at the outset whether one or two solutions are
to be expected. Find and check the remaining parts in each admissible
triangle.

l.o- 78° 20', 6 = 68° 12', A = 84° 19'.6.
2. a = 76° 2', b = 80° 7', A = 100° 49'.
3. A = 102° 38', B = 109° 6', a = 53° 42'.
4. A = 70° 53', B = 98° 13', a = 122° 55'.

5
. B = 95° 18', C = 81° 44', b = 148° 24'.

§ 17. Concerning the Area of a Spherical Triangle. When
the three angles are known, we may find the spherical excess,
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E= A + B + C - 180°. Then, as stated in § 2, the area of the
triangle can be found from the formula,

area of triangle E
area of sphere 720°

There are various other formulas for the area, but in such a brief
course as this, we can get along with one formula.

§ 18. Derivation of the Half-angle and Half-side Formulas.

Because of the brevity of this course we shall simply indicate

the steps by which formulas (24) and (26) are derived from the

cosine laws. For any angle A, whether in a triangle or not:

sin2 \A = J (1 - cos A), cos2 \ A = \ (1 + cos A). (34)

For an angle of a spherical triangle the cosine law for sides gives

cos a — cos b cos c ,„_
cos A = — ■•

(35)
sin o sin c

sin b sin c + cos b cos c — cos a cos (b — c) — cos a
1 — cos A = :

— -—
:

= :
—
:
—
:

sin o sin c sin o sin c

The numerator of this last fraction equals 2 sin J (b — c + a)
sin \ (a + c — b). If we let a + b + c = 2 s, then a + c — b =
2 s — 2b, and b — c + a = 2 s — 2 c. Thus the numerator be
comes 2 sin (s — c) sin (s — b) ; and

sin (s - c) sin (s - b)
sin2 i A = ■ r~;—:

sin o sin c

In like manner it is shown that

sin s sin (s — a)
cos2 h A =

sin b sin c

sin (s — c) sin (s
—
b)

sin s sin (s — a)

sin (s — a) sin (s
—
6) sin (s — c)

sin s sin2 (s
— a)
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This last fraction, without the denominator factor sin2 (s — a),
is r2 as defined in (23). Thus we have the first of the formulas

(24) . Similarly for the others.

The half-side formulas (26) are derived in like manner, starting from
the value of cos a as given by the cosine law for angles:

cos B cos C + cos A
cos a = :

——-— -= •

sin B sin C

§ 19. Derivation of Napier's Analogies. Formulas (28)-(31)
can be derived in the following manner. Starting with the half-
angle formulas (24), we have, after minor simplifications:

i , , r2 sin (s — c)
tan \ A tan \ B = -r— —— — = ; • -

sin (s — a) sin (s — b) sin s

Adding this product tan \ A tan | B to 1, also subtracting the
same product from 1, and then dividing the sum by the differ
ence, and reducing:

1 + tan | A tan 5 B sin s + sin (s — c)
1 — tan \ A tan \ B sin s — sin (s — c)

Multiplying numerator and denominator of the first fraction by
cos | A cos 5 B and using the "Addition Formulas" for the
cosine, we simplify the first fraction in (36) to cos £ (A — B)
-*• cos I (A + B). Also the fraction on the right side of (36) sim
plifies to

2 sin | (2 s — c) cos \ c _ tan | (a + b)
2 cos 5 (2 s

—
c) sin \ c tan ^ c

Equating the simplified values gives:

cos %(A- E) _ tan | (a + b)
cos 5 (A + B) tan | c

which is equivalent to formula (30).
The other Napier Analogies are derived in a like manner.



SECTION FOUR

Application to Navigation

§ 20. Great Circle Track Between Ports. In planning a
voyage or flight from a point A to a very distant point B, a
navigator needs to lay out the great circle route, technically

called the great circle "track" from A to B. He needs to know:

(1) The distance AB to be traveled; (2) the direction in which
to start from A; (3) the location of several points along the
track; (4) the direction in which he should be traveling when

passing through each of those points. This information can be
found approximately from maps, or more accurately by spherical

trigonometry.

To illustrate, suppose that A and B in Fig. 5 (page 26) represent cer
tain points near San Francisco and Tokio, respectively:

Point Latitude Longitude

A 37° 40' N. 123° 0' W.

B 34° 50' N. 139° 50' E.

Then, if C represents the North Pole, EFGH the equator, FBC the
meridian through B, and GAC the meridian through A, we know:

arc GA = 37° 40', arc AC = 90° - 37° 40' = 52° 20';
arc FB = 34° 50', arc BC = 90° - 34° 50' = 55° 10'.

Also, since A and G are 123° west of the Greenwich meridian (not
shown), while B and F are 139° 50' east of Greenwich, the equatorial
arc GHEF from G to F (by the long way around, crossing the Green
wich meridian) is 123° + 139° 50' = 262° 50'. Hence the direct arc
GF = 360° - 262° 50' = 97° 10'. This arc GF equals the angle C, at
the pole, between the meridians of A and B.
Hence in the spherical triangle ABC we know two sides and their
included angle:

-
a = 55° 10', b = 52° 20', C = 97° 10'. (37)'
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C C

b

Fig. 5. Fig. 6.

The required great circle distance AB is simply the third side of this
triangle. The initial direction in which the navigator should leave A
is determined by the angle A which the track AB makes with the meri
dian AC, i.e., with the north direction at A.

The "course" of a ship at any point P is defined as the angle
from the northward meridian at P (measured clockwise, i.e.,
with east as 90°) to the forward track of the ship. Thus, in

Fig. 5 if angle A were, 58° the "course" would be 360° - A,
or 302°.

§ 21. Great Circle Distance and Initial Course. Let us find
the distance AB and the initial course at A in the San Fran-
cisco-Tokio problem illustrated by Fig. 5.
We have given two sides and their included angle, as listed in

(37) above. If we use the logarithmic method of § 15, Case III,
we shall need the values, § (a - b) = 1° 25', § (a + 6) = 53° 45',
\ C = 48° 35'. Substituting these values in (28), (29), and (31)
gives:

cos 1° 25'
tan § (A + B) = ___ BOO ,., ctn 48° 35',

tan i (A - B)

cos 53° 45

sin 1° 25'

sin 53° 45
7 ctn 48° 35',

sin UA + B)
tan i c = ——:—7- — tan 1 25 .

sin J (A — B)
Working out the values by logarithms gives (page 28, Ex. 1) :

A = 57° 42'.4, B = 54° 36'.5, c = 74° 27'.3. (38)
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Hence the initial course is 360° — A = 302° 17 '.4; and the great
circle distance is 74° 27 '.3 or 4467 '.3. Since a 1' arc of a great
circle is one nautical mile, the distance is 4467 miles, approxi
mately.

Navigators more commonly find the distance by using a modification
of the cosine law known as the " haversine formula " and then find angle
A by using the sine law or the haversine formula again. (§ 23.)

§ 22. Positions Along the Track. To calculate several points
along the track a navigator first finds the point V where the
track is nearest the pole C. The meridian CV is perpendicular
to the track (Fig. 6). Thus in triangle ACV for the preceding
problem we have angle AVC = 90°, b = 52° 20' (known orig
inally), and angle A = 57° 42 '.4 (found as explained in §21).
This right triangle can therefore be solved for a' (= arc CV) and
for angle ACV. The latitude of V is then known, being 90° —
a'; and the longitude of V (west) is angle ACV plus 123°, the
given longitude of A.

To solve the right triangle ACV for a' we use Napier's Rule II,
choosing a' as the middle part, with co.6 and co.A as opposite parts.*

sin a' = cos co.6 cos co.A ; sin a' = sin 52° 20' sin 57° 42'.4. (39)

This gives a'. To find angle ACV, denoted here by C", we choose co.6
as the middle part, with co.A and co.C" as adjacent parts. By Rule I:

sin co.6 = tan co.A tan co.C; ctn C" = cos 52° 20' tan 57° 42'.4. (40)

Using logarithms we find from (39) and (40) :

a' = 42° 0', C" = 45° 57'.9. (41)

Thus the latitude of V is 90° - a' = 48° 0' N., and the longitude is
123° + C- 168° 57'.9 W.
To find positions along the track, say at intervals of 10° of
longitude, we could now consider other right triangles with CV
as one leg and with the other leg along VA or VB. Each such
right triangle would contain the known leg a' and a known angle
of 10° or 20°, etc., as chosen at C. Hence each such triangle
could be solved for its hypotenuse. Subtracting the latter from
90° would give the latitude of the point on the track whose
* The lettering is different here from that in Fig. 4. Here b is the hypotenuse ;
hence we have co.b.
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longitude was virtually chosen in taking the 10° or 20° angle.
Each such solution would give two points, one on VA and one
on VB.

EXERCISES

1. Do the necessary logarithmic work and verify the values of A, B,
and c listed in equation (38).
2. Similarly verify the values of a' and C" listed in (41).
3. Find the distance and the initial course for the great circle track
from A to B in each following case:

(a) A (Lat., 40° N.\ Long., 80° W.),
B (Lat., 50° N.; Long., 5° E.);

(6) A (Lat., 38° 20' N.; Long., 65° W.),
B (Lat., 0° 0'; Long., 20° W.);

(c) A (Lat., 6° 0' S.; Long., 35° 5' W.),
B (Lat., 15° 0' N.; Long., 17° 0' W.)

[Part (c) gives the track from Natal to Dakar.]

4. (a) In Ex. 3 (a) find the point V farthest north on the track.
(6) Find a point D on this track, whose longitude is 10° west of

that of V.
5. (a) In Ex. 3 (c) show that the point V farthest north lies far be
yond B on the track extended. (6) Find a point on the track in longi
tude 30° W.

§ 23. The Haversine Formula. The quantity § (1 — cos A)
is called the haversine of A, written hav A:

hav A = 4(1 ~ cos A). (42)

Thus, hav 60° = \ (1 - \) = .25000; hav 90° = \ (1 - 0) =
.50000; hav 120° = \ (1 + f) = .75000; etc. As A runs from
0° to 180°, hav A runs from 0 to 1, continually increasing.
Five-place tables of haversines and their logarithms are avail

able, for angles usually running at intervals of 10' from 0° to
180°. A common arrangement is shown here :

0' 10' 50'
Value Log Value Log Value Log

60° .25000 .39794 .25126 .40012 25632 .40897

61° .25760 .41094 .25887 .41308 26398 .42157
Here the characteristics of the logarithms are omitted ; but they are
evident in each case from the tabulated "Value."



APPLICATION TO NAVIGATION 29

The "haversine formula," which is much used in solving
spherical triangles, is derived from the cosine law for sides,

cos a = cos b cos c + sin b sin c cos A. (43)

From (42), cos A = 1 - 2 hav A. Substituting this in (43),
with a like expression for cos a, we get
1 — 2 hav a = cos b cos c + sin b sin c (1 — 2 hav A). (44)
The right member of (44) equals (cos b cos c + sin b sin c) —

2 sin 6 sin c hav A, or cos (b — c) — 2 sin b sin c hav A. Replac
ing cos (b — c) by 1 — 2 hav (b — c), we cancel the 1's and divide
through by —2, getting

hav a = hav (b
—
c) + sin b sin c hav 4. (45)

In (45) we may, if we wish, write (c — b) in place of (b — c).
This is desirable in case c > b.

It is well to state in words the general law represented by (45) : The
haversine of any side of a spherical triangle equals the haversine of the

difference of the other two sides, plus the product of the sines of those sides
by the haversine of their included angle.

To illustrate the use of this "haversine law" in a navigation .
problem let us calculate again the great-circle distance in the

San Francisco-Tokio problem of §§ 20-21. As in (37) :

a = 55° 10', b = 52° 20', C = 97° 10',

and we want c, the third side of the triangle. The formula, like

(45) but starting with c is:

hav c = hav (a — b) + sin a sin 6 hav C. (46)

i.e., hav c = hav 2° 50' + sin 55° 10' sin 52° 20' hav 97° 10'.

We calculate the product term by logarithms and add the re

sulting value to the tabulated value of hav 2° 50' to get the value

of hav c. Then we look up c.

Value Log product = .36540

sin 55° 10' 9^1425 hav 2° 50' - .00061
sin 52° 20' 9.89849 hav c = .36601

hav 97° 10' 9.75003 c = 74° 27' .36

.36540 •<— 9.56277 c = 4467' +.
The distance is about 4467 nautical miles, as found before.
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The initial course, 360° — A, can now be found by using this
value of c in the haversine law, starting with a as in (45) . Since
c-& = 22° 7'.36,
hav 55° 10' = hav 22° 7' .36 + sin 52° 20' sin 74° 27' .36 hav A.
The table gives hav 55° 10' = .21440, hav 22° 7' .36 = .03681.
Transposing, and solving for hav A :

.17759
hav A =

sin 52° 20' sin 74° 27' .36

Looking up logarithms we get log. hav A = 9.36711 — 10,
whence

A = 57° 42'.4 (as in § 21).

EXERCISES

1. (a-c) Use the haversine law to solve Ex. 3 (a-c), p. 28.
2. Similarly find the great circle distance and initial course from
Portland, Ore., to Berlin, given these positions: P(45° 31' 0"iV; 122°
40' 39" W), B(52° 31' 31" N; 13° 12' 51" E).
3. Likewise find the distance and initial course for each following
flight or voyage:

(a) From Miami (25° 46' N; 80° 11' W)
.to Lisbon (38° 42' N; 9° WW); •

'

(6) From New York (40° 46' N; 73° 52' W)
to Los Angeles (33° 57' N; 118° 22' W);

(c) From Washington (38° 52' iV; 77° 3' W)
to Mexico (19° 26' N; 99° 7' W);

(d) From Chicago (41° 50' N; 87° 49' W)
to Fairbanks (64° 51' N; 147° 44' W) ;

(e) From Rio de Janeiro (22° 54' S; 43° 10' W)
to Panama (8° 57' N; 79° 32' W);
(f) From St. Johns, N.F. (47° 34' #; 52° 41' W)
to Gibraltar (36° 6' N; 5° 21' W);

(g) From Honolulu (21° 18' N; 157° 52' W)
to Singapore (1° 17' N; 103° 51' E).
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